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Abstract—Domain Adaptation (DA) has attracted a lot of
attention in recent years. DA aims at overcoming the covariate
shift in dataset and aligning multiple existing but partially related
data collections. In this paper, we propose a new DA algorithm
which aligns the weighted subspaces generated from source
samples and target samples. The weighted subspaces of source
samples are generated using weighted Principal Component
Analysis (PCA). Specifically, the source samples closer to the
target domain are given higher weights during the construction of
subspaces, which is definitely beneficial for building an adaptable
classifier. Subsequently, the weighted subspaces of source samples
and the subspaces of target samples are aligned to achieve
domain adaptation. Experimental results on standard datasets
demonstrate the advantages of our approach over state-of-the-
art DA approaches.

Index Terms—Domain adaptation, Source domain, Target
domain, Representation learning, Image classification

I. INTRODUCTION

A major assumption in many machine learning algorithms
is that the training and test data should have the same feature
distribution. However, in many real-world applications, this
assumption may not hold. In such cases, transfer learning can
greatly improve the performance of learning. In recent years,
transfer learning has emerged as a new learning framework to
address this problem [1].

Domain Adaptation (DA) is a subproblem of transfer learn-
ing which using both source and target domains information
to adapt automatically. DA is usually differentiated into two
different scenarios based on the availability of labeling infor-
mation from target domain [2]. In the first scenario, called
semi-supervised DA, labeled target samples are available (e.g.
[3]–[5]). More challengingly, in the second scenario, named
unsupervised DA, labels of target samples are unavailable (e.g.
[6]–[8]). In this paper we focused on the second scenario.

Earlier work in unsupervised DA mainly achieves adaptation
in original feature space (e.g. [6], [9]). However, they cannot
completely describe data so that these methods perform not
well across domains. Recently, approaches based on subspaces
are attractive in tackling unsupervised visual DA problems.

Subspace-based methods for unsupervised DA are first pro-
posed in [8]. The method of [8] uses incremental learning
by gradually following the geodesic path between the source
and target domain. Subsequently, the approach of [8] was
extended to the infinite case, defining a new kernel equivalent
to integrate over all common subspaces [10]. Furthermore,
the source and target subspaces are aligned by learning a
mapping function [11]. The solution of the corresponding
optimization problem can be obtained in a simple closed form.
A recent work in [12] relax the assumption by detecting a
subset of labeled source data (landmarks) that could model the
distribution of the data in the target domain well. Nevertheless,
the method in [12] does not use the information from all the
source samples available for training the classifier, as they
use only landmarks and prune the rest. Moreover, all of the
methods in [8], [10]–[12] have an underlying assumption that
labeled source samples are of equal importance.

In this paper, we propose a weighted subspace alignment
framework for DA by giving all the source samples different
weights in the generation of subspaces. Source samples that
are closer to the target domain are given higher weights.
It is worth noticing that the idea of reweighting has been
used in transfer learning [13]. However, the approach in [13]
only reweight the source samples in building a classifier that
performs better for the target samples, which does not solve the
problem of different feature distribution of domains. Instead,
in this paper, we align the source samples and target samples
in feature space. However, it is not a good choice to align the
original feature spaces since the dimension is high. Therefore,
we generate the subspaces using the weight information and
align the subspaces. We conduct an experiment for comparison
and the results show that our algorithm has a better perfor-
mance over state-of-the-art methods.

II. PROPOSED ALGORITHM

In this section, we introduce our new algorithm in detail.
Our idea about this work is shown in Fig. 1. The shading of
the color represents the importance of source samples where
darker color means higher weight. The source samples that
are closer to the target domain have deeper color, namely,
higher weights. Then the weighted subspaces are generated
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leveraging the weight information. We suppose that there is
a source domain and a target domain with different marginal
distribution DS and DT . Both source and target domain are
lying in a D-dimensional space. There are m labeled samples
from source domain constructing source matrix S, where S =
[s1 . . . si . . . sm](si ∈ RD×1) and each column of S represents
a source sample. Similarly, the target matrix T is composed
of n target samples, where T = [t1 . . . tj . . . tn](ti ∈ RD×1).

Fig. 1. Illustration of our idea (best shown in color). (a) original source
domain. (b) original target domain. (c) weighted subspaces generated from
source samples. (d) weighted subspaces after alignment.

A. Weighted subspace generation

Even though both the source and target data lie in the
same D-dimensional space, they have been drawn according to
different distributions. Consequently, rather than working on
the original data themselves, it is suggested to handle more
robust representations of the source and target domains and
to learn the shift between these two domains. We use the
subspaces to represent source domain and target domain and
align the subspaces.

The first step of our algorithm is subspace generation.
The aim of this step is to generate the subspace of source
domain that are close to the target one, which is beneficial
for the following alignment operation. Thus we reweight the
source samples for the subspace generation. We give the source
samples that are closer to the target domain higher weights. Let
w = [w1 . . . wm]T, where w ∈ Rm×1 denote the weighting
vector of source samples. The weight wi of source sample si
increases if its distribution is more similar to target domain,
which can be expressed as:

w ∝ 1

∥DS −DT∥2
. (1)

To assign higher weights to the source samples that are closer
to target domain , we need to design the strategy of weight
assignment. We use the distance between source and target
samples as the criterion. The distance between target sample
tj and source sample si is defined as follows:

dji = ∥tj − si∥22. (2)

We calculate the distance of every pair between target and
source samples by Eq. (2) and get a distance matrix DIST
(DIST ∈ Rn×m). The distance of target sample tj and
source sample si represent the disparity of samples from two
domains. Then the minimum value of rows in matrix DIST
is computed:

vj = min
i=1...m

{dji}, (3)

where v = [v1 . . . vj . . . vn]
T (v ∈ Rn×1) contains the smallest

distance between each sample from target domain to source
domain. Then the weight of source sample si is calculated as
follows:

wi = w(0) +
n∑

j=1

µ(vj − dji), (4)

where w(0) is the initial weight (we set up as 1) and

µ(x) =

{
1, x = 0

0, x < 0.

Here the support region of function µ(x) is (−∞, 0] due to the
definition of v. From Eq. (4) we can see that if the distance dji
equals the minimal distance of target instance tj , the weighting
of source sample si will be increased. Through Eq. (4) we get
the weighting vector w of the source samples.

Thereafter, the weighted subspace of source samples, is gen-
erated through weighted PCA. The weighted PCA operation
first calculates the weighted covariance matrix through

C =
1

m

m∑
i=1

(si − s)Tωi(si − s), (5)

where s is the weighted mean and calculated through s =∑m
i=1 ωisi/

∑m
i=1 ωi. Then we perform eigen-decomposition

on C and select eigenvectors corresponding with the d largest
eigenvalues. These eigenvectors are used as bases of the
source subspaces, denoted as XS ∈ RD×d. And the bases
of the target subspaces are generated through PCA, denoted
as XT ∈ RD×d. By following the theoretical analysis of [11],
the optimal value of d is able to be determined. In [11], an
upper bound of d is inspired by concentration inequalities on
eigenvectors. In this paper, we also use this bound to tune the
number of dimensions d in PCA.

B. Weighted subspace alignment
After getting the weighted subspace, we design the subspace

alignment correspondingly.
Subspace alignment aims to find a linear transformation M

to best map the source eigenvectors to the target eigenvectors.
M is learned by minimizing the following Frobenius norm:

F (M) = ∥XSM−XT ∥2F , (6)



M = argminM(F (M)). (7)

Since XS and XT are generated from the first d eigenvectors,
they are orthonormal (XS

TXS = Id and XT
TXT = Id where

Id is the identity matrix of size d). Because the Frobenius norm
is invariant to orthonormal operations, Eq. (7) can be written
as follows:

F (M) =
∥∥∥XS

TXSM−XS
TXT

∥∥∥2
F
. (8)

From Eq. (8), the optimal M can be obtained as:

M = XS
TXT (9)

Matrix M transforms samples from the source subspace co-
ordinate system into the target subspace coordinate system.
The transformation M can be used to bring the reweighted
source samples into the same subspace as the projected tar-
get samples, by computing XSM. It means that the source
samples are projected into the target aligned source subspace
Sa via SXSM. Meanwhile, the target samples are projected
into the target subspace Ta by TXT . Finally, a nearest
neighbor classifier is learned from this d-dimensional space.
The proposed algorithm can be concluded as pseudo-code in
Algorithm 1.

Algorithm 1: Weighted Subspace Alignment DA algorith-
m
Input : Source Data S, Target data T, Source labels lS ,

Subspace dimension d
Output: Predicted target labels lT
DIST← (T,S);
v← min(DIST);
w← µ(v −DIST);
XS ← weighted PCA(S,w, d);
XT ← PCA(T, d);
M← XS

TXT ;
Sa ← SWXSM;
Ta ← TXT ;
lT ← classifier(Sa,Ta, lS);

III. EXPERIMENTS

Fig. 2. Examples of Amazon, Caltech10, DSLR, and Webcam.

We evaluate our algorithm in the context of object recogni-
tion using standard datasets in comparison with the state-of-
the-art DA methods in [10]–[12].

TABLE I
ACCURACY (%) ON TARGET DOMAINS WITH UNSUPERVISED DA USING A

NN CLASSIFIER (A: AMAZON, C: CALTECH10, W : WEBCAM, AND D:
DSLR)

Method NN GFK LM SA Ours
A → C 26.00 40.25 40.16 39.80 39.98
A → D 25.48 36.31 40.76 36.94 38.85
A → W 29.83 38.98 38.98 37.63 39.32
C → A 23.70 41.02 41.75 42.07 42.17
C → D 25.48 38.85 39.49 45.86 46.49
C → W 25.76 40.68 37.97 32.20 42.03
D → A 28.50 32.05 30.97 34.24 35.38
D → C 26.27 30.28 31.34 32.50 34.37
D → W 63.39 75.59 84.75 88.47 89.49
W → A 22.96 29.75 31.00 34.34 33.19
W → C 19.86 30.72 29.21 28.76 30.89
W → D 59.24 80.89 83.44 88.54 90.44
Average 31.37 42.95 44.15 45.11 46.88

A. Data preparation

We use the Office dataset [6] and Caltech10 [10] dataset
(extracting 10 image categories from Caltech256 [14]) that
contain four domains altogether. The Office Dataset contains
three object domains: Amazon (images downloaded from
amazon.com), Webcam (images taken using a webcam) and
DSLR (images taken from a Digital Single-Lens Reflex cam-
era). Following the previous work [10], image representations
are extracted as SURF features [15]. SURF features have
been shown to be highly repeatable and robust to noise, dis-
placement, geometric and photometric transformations. SURF
features are extracted and quantized into an 800-bin histogram
with codebooks from Amazon. Then the histograms are stan-
dardized by z-score. Thus we have four domains, A (Amazon),
C (Caltech10), D (DSLR) andW (Webcam) leading to 12 DA
problems, for example, A → C. Fig. 2 shows several image
examples of the four domains.

B. Classification results

We compare our approach with one baseline and three state-
of-the-art DA methods for image recognition problems: 1-
Nearest neighbor classifier (NN), Geodesic flow kernel (GFK)
[10], Landmarks (LM) [12], and Subspace alignment (SA)
[11]. As suggested by [10], NN classifier is chosen as the
base classifier since it does not require tuning cross-validation
parameters. Table I provides the quantitative results of the
proposed methods in comparison with the state-of-the-art
unsupervised DA approaches. Bold indicates the best result
for each domain split. For a better explanation, the results
are also visualized in Fig. 3. Note that, without the operation
of adaptation, the standard NN classifier can only achieve an
average classification accuracy of 31.37 %. Furthermore, it
can be observed that our method has the best performance in
9 out of 12 DA subproblems. And in the other 3 DA tasks
our algorithm has the second best performance. The average
classification accuracy of our algorithm is 46.88%, gaining
a significant performance improvement of 2% compared to
methods including NN, GFK, LM, and SA. In GFK, the
subspace dimension d should be small enough to ensure that



Fig. 3. Recognition accuracy (%) on 12 cross-domain datasets. (Best viewed in color)

different subspaces can transit smoothly along the geodesic
flow. However, the low-dimensional subspaces can not rep-
resent input data accurately in the case of high-dimensional
while the subspace dimension d in our algorithm has an
theoretical upper bound which is flexible to represent the
input data. Instead of selecting only a subset of source data
as in LM, our algorithm utilize information from all source
samples. Consequently, our algorithm performs better than
LM. Moreover, the difference of accuracy between SA and our
method comes from the fact that the former takes all source
samples as equal, while the later reweights the source samples.

IV. CONCLUSION

In this paper, we present a new DA algorithm aligning
the subspace generated on the reweighted samples . Through
the operation of weighted subspace alignment, the source
samples which distribute more similarly to the target domain
are given higher weights. Then the subspaces of reweighted
source samples and target samples are aligned for the purpose
of adaptation. The proposed algorithm achieves excellent per-
formance on several image classification datasets. Experiment
results show that our algorithm outperforms state-of-the-art
DA methods. The unsupervised DA methods mentioned in this
paper are all restricted to a single source domain, while there
maybe exists multiple unknown domains in source data. In
future work, we plan to exploit latent domains and investigate
the influence of our algorithm on multi-domains.
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